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Abstract

Energy recovery from waste tends to decrease problems, such as increased energy consumption and waste
management, by using waste to produce energy. Anaerobic digestion is one such technology, producing energy
without greenhouse gas emissions from biodegradable waste. Although widely used, anaerobic digestion is a
complex process and there is some difficulty in predicting and optimising the process, so there is a continuous study
of it through mathematical modelling. This work aims to develop a mathematical model based on process data that
describes the operation and behaviour of an anaerobic digester over time. The model was developed based on
the ADM1 model developed by IWA. The model was calibrated with a set of operation data, and after validation,
the same model was tested for a different set of data in order to understand if it remained valid. From the results
obtained it was possible to understand that there is a lack of input data, mainly of the substrate composition, so that
the model can predict correctly. However, for the existing data, the model obtains acceptable errors and is able to
predict the trends. By re-calibrating the model it was possible to conclude, that with low input information, a model
that adjusts over time can be beneficial. The best results were obtained when there was information about the initial
substrate, such as COD.
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1. Introduction
Energy supply and waste management are two of the biggest
problems that our planet faces. With the continued growth of
the population, industrialisation, improvement of living stan-
dards, and high consumption of products and energy, waste
production also tends to increase. Although there has been
much progress in recent decades, remains a growing problem
and it crucial to be solved. [1, 2, 3]
The rapid growth of energy consumption over the years, and
the need to match it with energy accumulation and conversion,

have led to a transition from biomass (wood) to fossil fuels
(coal, natural gas, etc.). This rapid growth had spotlighted en-
ergy sources that are ready for immediate use with preferably
no pre-process. Energy consumption is expected to continue
to grow and the intensive use of fossil fuels results in signif-
icant greenhouse gas emissions and, consequently, climate
changes. Over the past few decades efforts have been made to
solve this problem with developments in renewable energies.
Nevertheless, there is still a long way to go since the primary
source of energy in the world is still, by far, fossil fuels. [2, 3]
Waste management’s beginnings were only towards human
excrement and sewage, which caused many health problems.
Later progressed to municipal solid waste, which is increas-
ingly worried about gaseous wastes, like CO2, CH4 and others
(NOx, Sox, etc.), the environment, and public health. [2]
Energy and waste problems are connected in numerous ways,
and waste to energy (WTE) can address these two critical
issues. WTE is the direct conversion of waste to steam and
electricity. Organic waste, mostly composed of biomass, is a
renewable resource. It has been used for energy generation
since it is a feasible and affordable way to produce energy,
mainly in developing countries. It also has the advantage
of not emitting carbon dioxide into the environment, thus it
is favourably compared to other energy production methods.
These types of technology, which are in continuous develop-
ment, pretend to extract energy in the most efficient way while
reducing waste. To produce power at optimal conditions it
is necessary to understand the underlying reaction sequences
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(mechanisms) and enable the technologies, in order to be as ef-
ficient as possible, because there is still much work to be done
to understand the whole mechanism. In the last years, the
Anaerobic Digestion (AD) of municipal solid waste (MSW),
which is a technology of WTE, has become one of the most
attractive renewable energy pathways. [2, 3]
AD is a natural biochemical process that degrades complex
organic matter in the absence of oxygen, obtaining biogas
(mainly CO2 and CH4) and digestate as the two main prod-
ucts. Biogas, in addition to methane and carbon dioxide, also
contains semi-harmful contaminants such as hydrogen sul-
phide and ammonia, but in much smaller amounts (<11%
(v/v)). The production of these gases is a product of the sul-
phur and nitrogen contents of the feedstock, which are also
nutrients required by the process microorganisms, so they
cannot be eliminated. [1, 3, 4] Some examples of natural
environments where it occurs (some low-oxygen niches) are
marshes, marine water sediments, etc. AD processes allow the
treatment of waste to reduce the volume and load, producing
biogas and digestate. [1, 5, 6, 7]
It is predicted that AD will play an increasingly important
role in renewable energy production, given that biomass is a
renewable resource and due to its circular economy. [3, 8]
This process can be used both at the industrial and domestic
levels. [1, 6, 7]
AD is a well-establish process and used for several decades.
Still, due to the substrate variability, microbial complexity, and
complex physical and chemical interactions in the process, the
optimal design of digesters for maximum yield and prediction
of the performance is still a challenge. There is also a lack of
knowledge about the mechanisms of AD. [5, 9]
With the increase of industrial interest, research and devel-
opment were intensified. Mathematical modelling is one of
the most discussed aspects, intending to identify the most
relevant models to optimise digesters biogas formation. There
is continuous development and testing of new digesters, new
combinations of AD substrates, feeding systems, as well as
other equipment’s. [5, 6]
Mathematical modelling aims to estimate characteristic pa-
rameters of the feedstock and process conditions to forecast
the system’s evolution, the performance obtained, and fermen-
tation speed. It is a helpful tool to improve the design and
efficiency of AD systems. [10]
Over the years, the variety and complexity of mathemati-
cal models developed have increased. Several models have
been developed in the last two decades, and a diversity of
approaches to modelling and parameter identification have
been used, creating available models with a precise nature.
[5, 8, 9, 11]
The first model was proposed by Andrews and Pearson [12],
and had in consideration two bacterial groups, namely acid
and methane microorganisms, and the substrate was presumed
to have dissolved organic substances. [8, 13] The subsequent
models considered biogas production using only the methano-
genesis step, as other organisms had inhibitor effects. Denac

et al. [14] added to this model the conversion of propionate
to acetate by including acetogenesis. [8, 13] The last models
developed were based on the four populations (hydrolytic,
acidogenic, acetogenic and methanogenic microorganisms),
predicting the change of VFA, pH-value, and biogas produc-
tion. [13] The kinetics steps of these models were based on
Monod type kinetics [15], which consider a single growth-
limiting substrate. [8, 13]
The exponential model was used to describe the cell concentra-
tion in its growth phase and rests on the theory that the speed
of growth in an instant is proportional to the concentration
of existing cells. However, the cell concentration variation is
not described accurately as the substrate is consumed and the
stationary phase approaches. [5]
Microbial growth and substrate consumption rates (both de-
pendants on the growth-limiting substrate concentration) are
the base of the kinetic models. The nutrients on the substrate
are presumed to be adequate, and inhibition is also taken into
consideration. Several models were developed, presenting
complex kinetics and particular applications. [8, 16]
The Anaerobic Digestion Model No.1 (ADM1) was developed
by the International Water Association (IWA) Task Group [11]
with the objective of creating a model as widely applicable as
possible for anaerobic processes. This will not be as accurate
as some specific models developed for certain applications
because of its generic nature. [16] The components are ex-
pressed based on their COD and consider both biochemical
and physicochemical processes, assuming perfect substrate
mixture. In this model, substrate represents only the degrad-
able COD, since that a significant fraction of the input COD
may be anaerobically non-biodegradable. [11, 16]
This master thesis aims to develop a preliminary mathematical
model to describe the operation of anaerobic digesters and
predict the digestor’s behaviour over time. This model will
have as bases operational data of the units in the study and
standard models existing in the bibliography.

2. Implementation
2.1 Methods and procedure in this work
The numerical model developed during this work was per-
formed using the software Excel. The flowchart presented
in Figure 1 explains the work path and procedure applied.
After selecting the model bases and parameters, the model
was formulated based on initial conditions, mainly presenting
experimental and theoretical values. Then, based on the first
set of data (operation data), the parameters defined initially
from theoretical values were estimated by consecutively car-
rying out simulations until the experimental and theoretical
values present similar behaviour. Once the calibration was
finished, a second model validation was carried out based on
the second data set.

2.2 Assumptions and model description
The model was developed, having in consideration an ideal
reactor to describe the apparent behaviour. However, the real
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Figure 1. Flowchart of the applied methods and procedures in
this work.

digester is not ideal given that temperature and concentration
present gradients and other physical and chemical occurrences.
Nevertheless, the reactor was considered perfectly agitated,
i.e., temperature or concentration gradients were not consid-
ered.
The model was developed based on some assumptions and
simplified equations of model ADM1 to facilitate the con-
struction and operation (presented below), as there are some
limitations in terms of existing data. One of the most relevant
limitations is the lack of data characterising the input, such as
substrate composition. The information flow existing in the
model, i.e., the model input data and results obtained from the
model, is as follows: the model receives data on temperature,
input flow and digester level, and provides information on
biogas flow, COD, Ntot, Ptot and % CO2 and CH4 in biogas.
Model assumptions:

• CSTR reactor;

• Mesophilic digestion (reference temperature of 35ºC);

• First-order reactions;

• Constant density (Table 1);

• COD flux (Figure 2);

• Inhibitions were not considered;

• The ratio of 0.47 to CO2/CH4.

In addition, some parameters were also arbitrated based on
theoretical values for parameters that did not present experi-
mental values, which are presented in Table 1.
The mass balance to the liquid phase was done for each compo-
nent individually, according to Equation 1, for the components
presented in COD flux (Figure 2).

dXi

dt
=

qin

Vliq
(Xi,in −Xi)+∑γ jvi, j (1)

Table 1. Assumed parameters for the development of the model.

PARAMETER VALUE REFERENCE

ρdig (kg/m3) 1 000 -

ρbio (kg/m3) 1.12 -

LP/C 0.02 Based on [17, 18]

PN/C 0.26 Based on [17, 19]

P%Li (%) 0.25 Based on [18, 20]

N%Pr (%) 0.3 Based on [20, 21]

where qin is the feed flow, Vliq is the volume of the liquid
part inside the digester, Xi,in and Xi are the concentration
of each component i in the inlet and in the digester, vi, j is
the biochemical rate coefficients, and γ j is the kinetic rate
equations for the components (i).

Figure 2. COD flux of a particulate composite considered for
the development of the model.

2.3 Model Formulation
The model formulated was based on the ADM1 model, given
that it is the most generic and applicable model, and it is a
model that can be adapted and easily modified. This is an
essential point since the available data and parameters are
limited, thus it is necessary to adapt the model. Bellow are
presented the initial conditions that were taken into considera-
tion and from where some of the variables were defined. It is
important to refer that in the stoichiometry of the disintegra-
tion, the values in the table will not be used fixedly but will
be one of the parameters fitted in the model calibration.
The mass balances were performed in terms of COD, so it
was necessary to know the initial value that the composite
presents. This value has not been measured, so it was neces-
sary to estimate it from the available data. This calculation has
in consideration the chemical composition of the composite
that can vary with the substrate, which is unknown. Hence, the
initial COD is a variable parameter. The following composi-



Anaerobic Digestion - Process Data Analysis — 4/10

tions of macromolecules, shown in Table 2, were assumed for
the chemical composition of the composite. [19] Moreover,
Equations 2 and 3 represent the global equations of AD. [22]

Table 2. Chemical composition of the macromolecules proteins, carbohy-
drates, and lipids. [19]

Proteins C1H2.52O0.87N0.26

Lipids C1H2O1

Carbohydrates C1H2.85O0.575

CcHhOo + yH2O → xCH4 +(c− x)CO2 (2)

CcHhOo + yO2 →
h
2

H2O+ cCO2 (3)

where x is defined by Equation 4:

x =
c
2
+

h
8
− o

4
(4)

The initial COD calculation process will be demonstrated
below for an example where the composite composition is
as follows: 99.8% of carbohydrate, 0.18% of proteins, and
0.009% of lipids. It was possible to deduct Equations 5 and 6,
which represents the AD of this composite:

C1H2O1 +H2O → 0.5CH4 +0.5CO2 (5)

C1H2O1 +O2 → H2O+CO2 (6)

From Equation 5, it is possible to confirm that from 1 mol
of CH2O it is obtained 1 mol of gas (CH4 and CO2), that
according to the constant of perfect gases under atmospheric
conditions, 1 mole of gas corresponds to 22.4L of gas. To
oxidise 1 kg of composite, 1 kg of oxygen is necessary, which
will produce the correspondent to 33.3 moles and 746.7L of
gas. So, the methanogenic potential is 0.75 m3 biogas/kg
COD. From equation 7, it is possible to estimate the initial
COD of a composite, that will be used as the concentration of
composite in terms of COD, Xc,in:

0.75
m3gas

kgCOD
·Xc,in

kgCOD
m3 f eed

·qin
m3 f eed

day
= qbio

m3biogas
day

(7)

where qbio is the biogas flow.
The value of the initial COD was arbitrated (and used fixedly)
from an average of feed and biogas flow, and the value ob-
tained was 35 kg/day.
To obtain the amount of nitrogen and phosphorous at the
output to compare theoretical and experimental values, it was
also necessary to define them from the model components.
Thus, equations 8 and 9 represent the mass balance:

dNtot
dt

= Ntot,i −Ntot = (qin ·ρdig ·N%Pr ·Cpr)−Ntot (8)

where Ntot,i and Ntot are the inlet total nitrogen flow and
total nitrogen flow, respectively, ρdig is the digestate density,

N%Pr is the composition of proteins in nitrogen and Cpr is the
composition of the composite in proteins.

dPtot
dt

= Ptot,i −Ptot = (qin ·ρdig ·P%Li ·Cli)−Ptot (9)

where Ptot,i and Ptot are the inlet total phosphorus flow and
total phosphorus flow, respectively, P%Li is the composition
of lipids in phosphorus and Cli is the composition of the
composite in lipids.
Moreover, Ntot and Ptot can be calculated from Equations 10
and 11 in the first instance before considering the steady-state.
Then, the successive ones are calculated from the variation.

Ntot =
qdig

ρdig
·PN/C · (XPr +Xaa) (10)

Ptot =
qdig

ρdig
·LP/C ·Xli (11)

where PN/C is the ratio between nitrogen and carbon in pro-
teins, LP/C the ratio between phosphorus and carbon in lipids,
and Xaa the concentration of amino acids.
The final COD in the digested was also calculated from theo-
retical values of the model in order to be possible to compare
with the experimental values, from Equation 12:

COD=
qdig

ρdig
[Xc +Xch +Xpr +Xli +Sms +Saa +SLCFA +SV FA +Sac]

(12)

where Xc, Xch, Xpr, Xli are the concentration of particulate
components composite, carbohidrates, proteins and lipids,
respectively, and Sms, Saa, SLCFA, SV FA, Sac are the concen-
tration of soluble components monosacharides, amino acids,
long chain fatty acids, volatile fatty acids and acetate, respec-
tively.
The temperature variation in the digester was considered using
the Arrhenius law, described in Equation 13, which will allow
a fitting of the kinetic constants with temperature.

k = kre f · exp
[
−Ea

R
(

1
T
− 1

Tre f
)

]
(13)

where k and kre f are the kinetics constant at a given tem-
perature and at a reference temperature, respectively, Ea is
the activation energy, R is the ideal gas constant, and T and
Tre f are the given temperature and the reference temperature,
respectively.
The COD flux defined does not consider the production of
CO2, as it only considers the production of CH4 and H2 gases.
Therefore, the concentration of CO2 was defined as a function
of CH4. Furthermore, from the experimental data of these
parameters over a year, it was possible to verify that they
present an approximately constant ratio, so it was defined in
this way (Equation 14).

SCO2 = 0.47SCH4 (14)
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The amount of biogas exiting the digester (qbio) was calculated
(Equation 15) having in consideration the production of the
three components considered (CH4, H2 and CO2) and the
volume of biogas inside the digester, that is the biogas retained
inside the digester.

qbio = biogas produced −biogas retained (15)

Initial values
For the model formulation, literature values were considered
that later will be fitted with the calibration of the model. Ta-
ble 3 presents the values that were assumed for the kinetic
constants. [11] It is essential to mention that the kinetic con-
stants referred to in the table are to a reference temperature
of 308.15K and will be fitted for the actual temperature, as
will be further explained. [11] The initial values of the Ea for
each reaction was 20 Kcal/mol, and the composition of the
composite was 30% of carbohydrates, proteins and lipids, and
10% of inerts. [11]

Table 3. Initial values for the kinetic constants. [11]

PARAMETER VALUE UNIT

kdis 0.40

d−1

khid,ch 0.25

khid,pr 0.20

khid,li 0.10

kacid,ms 30

kacid,aa 50

kacid,LCFA 6

kacet,V FA 20

kmet,ac 20

kmet,h2 20

Eaacet,V FA 20

Eamet,ac 20

Eamet,h2 20

2.4 Dynamic model fitting and validation
Once the model is defined, it is necessary to carry out the
calibration and validation with the first set of data and then
the cross-validation with the second set.
The calibration of the model was made through the use of
the Solver tool of Excel to minimise the squared difference
between experimental and theoretical values. This process
was carried out through several consecutive and iterative steps
until the results were stable:

• Step 1 – fitting of the composite composition;

• Step 2 - fitting of the kinetic constants at the reference
temperature;

• Step 3 - fitting of the activation energy of each reaction.

The third step, the fitting of the activation energy of each reac-
tion, depends on the digesters temperature. Despite not being
expected good results from this fitting, since the temperature
data present little variation, this was performed in order to
analyse the results.
For the validation, the difference between the experimental
and theoretical values was compared, and the relative error
of the model regarding each parameter in the analysis was
calculated. Then, in the cross-validation, the same was done as
in the validation, together with an addition of a new calibration
in order to assess the possibility of improvement.

3. Results and Discussion
3.1 Model Formulation
The model was formulated with the initial values presented in
Table 3. The results obtained are graphically represented in
Figure 3.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison between experimental and theoretical
values of a) COD, b) biogas flow, c) Ptot, d) Ntot, e)% of
CO2 and f)% of CH4 in biogas, after model formulation (at
initial conditions).

The results obtained make it possible to understand that the
theoretical model with the literature values conditions is quite
far from reality. The closest parameters are %CO2 and %CH4,
which already present a behaviour very close to reality, with an
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error between 1.2% and 4.3%. However, despite having values
similar to reality, these parameters do not show variations,
since the CO2 concentration is not defined by the kinetics in
the model but rather as a proportion of CH4.

3.2 Model Calibration and validation
As mentioned, for the validation of the model, the three steps
presented above (composite composition, kinetic constants
and activation energy calibration) were performed iteratively
until stable results were obtained. The results are presented in
Figure 4, and Table 4 contains the obtained errors.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Comparison between experimental and theoretical
values of a) COD, b) biogas flow, c) Ptot, d)Ntot, e)% of CO2
and f)% of CH4 in biogasafter the calibration with data set 1.

Table 4. Error between the experimental and theoretical data after the
calibration with data set 1.

Error
COD

(kg/day)

qbio

(m3/day)

Ptot

(kg/day)

Ntot

(kg/day)
%CO2

and
%CH4

Quantity 36.22 1 183 0.18 4.20 <1.4

Percentage
value
(%)

64.2 8.0 57.8 57.8 <4.3

Relevant operating disturbances can be changes in average res-

idence times, working temperature or even in the raw material
feeding, and only the flow rate and temperature are consid-
ered in the model. Therefore, it would have been essential to
have some characterisation of the raw material, for example,
of close analysis and potential for biogas production. Since
there is no such data, an analysis was carried out in order to
understand the fluctuation existing in the parameters when the
supply is stationary, that is, the variation of the parameters
that are influenced by factors that are not considered in the
model. This fluctuation is the error that can be considered
acceptable in the model.
For the conclusions of this analysis to be as accurate as pos-
sible, two periods in which the feed flow is stationary were
analysed. In Figure 5, the first period is present, between
days 182 and 190, and in Figure 6, the second one, between
days 326 and 340. The fluctuations of each parameter are also
summarised in Table 5.

Table 5. Fluctuations of Ptot, Ntot and COD parameters during two distinct
stationary periods.

Period
(days)

∆ Ptot
(kg/day)

∆ Ntot
(kg/day)

∆ COD
(kg/day)

182-190 1.1 43.2 123.7
326-340 1.5 14.3 40.1

(a) (b)

(c) (d)

Figure 5. Experimental values of the parameters a) feed flow,
b) Ptot, c) Ntot and d) COD between the days 182 and 190.
Dots marked in red represent unused data to calculate the
fluctuation, as it has been considered unreliable.

From the results obtained, it is possible to verify that the
fluctuation of the values is very significant, presenting values
higher than the error presented by the model, namely: Ptot
presented an error of 0.18 kg/day and a minimum fluctua-
tion of 1.1 kg/day; Ntot with an error of 4.20 kg/day and a
minimum fluctuation of 14.3 kg/day; and COD with an error
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(a) (b)

(c) (d)

Figure 6. Experimental values of the parameters a) feed flow,
b) Ptot, c) Ntot and d) COD between the days 326 and 340.
Dots marked in red represent unused data to calculate the
fluctuation, as it has been considered unreliable.

of 36.22 kg/day and a minimum fluctuation of 40.1 kg/day.
Therefore, it is possible to conclude that the model fits the
experimental data in COD, Ntot and Ptot parameters since the
theoretical predictions are within the data fluctuation range.
The biogas flow presents a good forecast by the model, taking
into account the available data and correctly predicting most
trends. However, it has an error of about 8.0% in the forecast.
As mentioned before, it can be, in part, associated with the
1-day delay forecast and the lack of data in the model’s input
data regarding the substrate composition.
The parameters %CO2 and %CH4 in biogas have a reduced
error, but since only the amount of CH4 is calculated and CO2
is obtained from a ratio with CH4, their relative amounts in
the biogas remain constant, showing no variation with experi-
mental values. Nevertheless, even if CO2 was calculated, its
prediction and CH4 would never be accurate as they depend
on the composition of the inlet, such as COD, Ntot and Ptot.

3.3 Cross-validation
The cross-validation was carried out in order to verify if the
model was also able to make a correct prediction for a different
and more extensive set of data, having been used data set 2 for
this verification. The results obtained are presented in Figure
7, and in Table 6 the obtained errors.
Cross-validation of the model allowed us to realise that, de-
spite a more significant forecast error, the model continues
to be valid since it predicts the trends and all the parameters
within an acceptable and explainable error. However, the re-
sults presented may demonstrate that a model with fitting over
time could be favourable.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison between experimental and theoretical
values of a) COD, b) biogas flow, c) Ptot, d) Ntot, e)% of
CO2 and f)% of CH4 in biogas, for the cross-validation with
data set 2.

The model continues to predict the trends of biogas flow cor-
rectly, with a 19.4% error associated, as before, even though
it had a forecast delay of 1-day and does not consider the
substrate’s composition. This error increase in the amount of
biogas demonstrates a need for additional data in the model’s
input. In addition, it opens up the possibility that a model that
fits overtime may be advantageous for the case.
COD, Ntot and Ptot also show a significant increase in error.
However, when evaluating the error concerning the previously
studied fluctuation, only the COD is not within the minimum
fluctuation but rather within the maximum fluctuation. Ptot
presents an error of 0.7 kg/day and a minimum fluctuation
of 1.1 kg/day; Ntot presents an error of 7.32 kg/day and a
minimum fluctuation of 14.3 kg/day; and COD with an error
of 65.93 kg/day and a minimum and maximum fluctuation of
40.1 and 123.7 kg/day.
It is possible to conclude that the model fits the experimental
data in Ntot and Ptot parameters since the theoretical pre-
dictions are within the minimum data fluctuation range, and
COD also fits, although it is only within the upper value of
fluctuation. However, some errors can be considered as well.
The parameters % of CO2 and %CH4 in biogas present a more
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considerable error, although it remains lower than 6%.

Table 6. Error between the experimental and theoretical data for data set 2
(cross-validation of the model).

Error
COD

(kg/day)
qbio

(m3/day)
Ptot

(kg/day)
Ntot

(kg/day) %CO2
and

%CH4
Quantity 65.93 1 632 0.70 7.32 < 3.82
Percentage

value
(%)

84.5 19.4 104.3 77.6 5.9

Re-calibration
A re-calibration of the model was made with data set 2 to
analyse the differences obtained. The results are presented in
Figures 8, and in Table 7 contains the obtained errors.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparison between experimental and theoretical
values of a) COD, b) biogas flow, c)Ptot, d)Ntot, e)% of CO2
and f)% of CH4 in biogas, after the re-calibration of the
model for data set 2.

From the re-calibration results, it is possible to conclude that
the model presents improvements in almost all the parameters.
It is also possible to conclude that a model with fitting over
time would improve the prediction capacity, as there is a lack
of data in the model input.

Table 7. Error between the experimental and theoretical data after the
re-calibration of the model for data set 2.

Error
COD

(kg/day)
qbio

(m3/day)
Ptot

(kg/day)
Ntot

(kg/day) %CO2
and

%CH4
Quantity 64.19 1 397 0.60 7.22 < 3.82
Percentage

value
(%)

82.3 16.6 89.8 76.5 5.9

As referred before, COD, Ptot and Ntot vary with the compo-
sition of the substrate, so for this model, it is expected that
there is an improvement in the fitting of the composition for
each different set of data. However, if the feed composition
were one of the input variables, this would not be expected to
happen.

3.4 Information re-feeding
Information re-feeding was performed in order to understand
if the model would obtain better results if it had more data.
In this way, the initial substrate COD was calculated from
Equation 7, becoming one more variable information in the
model’s input.
The results obtained after the information re-feeding are pre-
sented in Figures 9 and 10 for data set 1 and data set 2 (before
the re-calibration), respectively, and in Table 8, the obtained
errors.

Table 8. Error between the experimental and theoretical data after the
information re-feeding, for data set 1 and data set 2.

Error
COD

(kg/day)
qbio

(m3/day)
Ptot

(kg/day)
Ntot

(kg/day) %CO2
and

%CH4
data set 1
Quantity 36.9 1 129 0.18 4.18 <1.40
Percentage

value
(%)

65.4 7.7 57.8 57.6 <4.2

data set 2
Quantity 57.9 1 226 0.60 7.28 < 3.82
Percentage

value
(%)

74.3 14.6 89.8 77.2 5.9

From the results obtained is possible to conclude that the
prediction of the model presents a significant improvement.
For data set 1, the improvement is only significant for the
biogas flow, showing an improvement from 11.9% to 7.7% of
error between experimental and theoretical data. Analysing
the graphs it is possible to verify that the model predicts the
biogas flow fairly correctly, which was not the case before
at all moments. The error obtained is directly related to the
1-day forecast delay. If the forecast did not present a 1-day
delay, the error between experimental and theoretical data
would only be 0.1%, which demonstrates the accuracy of the
forecast.
On the other hand, data set 2 presents significant improve-
ments in COD, Ptot, Ntot, and biogas flow. The improvement
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Comparison between experimental and theoretical
values of a) COD, b) biogas flow, c) Ptot, d) Ntot, e)% of
CO2 and f)% of CH4 in biogas for data set 1 after the
re-feeding of information.

obtained for these four parameters indicates that possibly if
the model would have as an input the initial COD, a model
with fitting over time would not be necessary since the results
obtained are similar to those obtained after the fitting. As
mentioned before, COD, Ntot and Ptot present a significant
error due to a lack of data on the composition of the substrate.
However, they are within the data fluctuation, so the model
fits the experimental data. As for data set 1, the biogas flow
is correctly predicted in terms of trends and presents an error
of 14.6% associated with the 1-day delay forecast. If there
was no 1-day forecast error, the error between experimental
and theoretical data would only be 1.9%, demonstrating the
forecast’s accuracy.
In conclusion, using the initial COD as an input parameter
significantly improves the model prediction, confirming once
again that the model would predict more correctly if it had
more input data, such as substrate composition.

4. Conclusions

The model presented a good performance, predicting within
an acceptable error, taking into account the received data. The

6
(a) (b)

(c) (d)

(e) (f)

Figure 10. Comparison between experimental and theoretical
values of a) COD, b) biogas flow, c) Ptot and d) Ntot, e)% of
CO2 and f)% of CH4 in biogas for data set 2 after the
re-feeding of information.

biogas trends were predicted partly correctly, with some errors
associated with missing input composition since it was ob-
served that this deviation was eliminated with the information
re-feeding. In terms of biogas quantity, the prediction also
presents minor errors, which were almost eliminated when the
COD at the reactor inlet was introduced in the data input of the
model. However, the forecast of biogas flow always presents a
delay of 1-day, if this was eliminated, the error between exper-
imental and theoretical data would be 2% maximum, which
demonstrates the accuracy of the forecast. In future, one way
to improve biogas forecasting would be to have experimental
data from the initial COD, even if they were periodic analysis,
and then the remaining day’s approximations would be based
on the type of feedstock entering.

The model cannot correctly predict the relative amount of
gases, and it was not possible to calibrate the kinetic constant
of the methanogenesis reaction of hydrogen. Both the amount
of H2 and CO2 were obtained by assumptions and not by
kinetics, so it does not represent an accurate amount of this
gas either. This is the point that needs more work in the future,
which is to insert kinetics that correctly predict the amount of
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the gases.
The prediction of COD, Ntot and Ptot show a more signifi-
cant error. However, it is within the expected data fluctuation.
As mentioned, the data analysis was performed by selecting
intervals of days with constant feedstock flow to understand
the fluctuation of these variables. Despite the fluctuation,
at certain moments, it is possible to identify a correct trend
prediction, which seems to be associated with days without
variation in the input composition. Therefore, it was possible
to conclude that this fluctuation is high and that the model pre-
dicts within this range. The fluctuation of COD, Ntot and Ptot
parameters is associated with the variation in feedstock com-
position, so in order for the model to predict these variables
correctly, it is necessary to have data about the composition in
the model’s input data. The chemical analysis of the substrate
could give this information in order to obtain its composition.
However, this process can be time consuming and expensive,
so a more effective way to do it would be to characterise
the waste coming from different places and related collection
days, such as hotels, restaurants, shopping malls, houses, and
so on, as these variables will affect their composition. The
waste characterisation is, in these terms, a possible approach
to enable approximate predictions of parameters related to
substrate composition.
By re-calibrating the model, it was possible to conclude that
a model that fits over time can be beneficial when there is
no data about the substrate composition in the model’s input.
However, when comparing with a model with more input data
regarding the substrate composition, there is no need to fit
over time since it already presents good results.
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